Картирование геномов. Картирование генома (генетические, цитологические и физические карты хромосом) Как картирование генов помогает медицинской генетике

Картирование генома человека

Нам незачем богов напрасно беспокоить -

Есть внутренности жертв, чтоб о войне гадать,

Рабы, чтобы молчать, и камни, чтобы строить!

Осип Мандельштам, «Природа - тот же Рим…»

Генетика - молодая наука. Эволюция видов была по-настоящему открыта лишь в конце 50-х годов XIX века. В 1866 году австрийский монах Грегор Мендель опубликовал результаты своих опытов по опылению гороха. Вплоть до конца века на его открытие никто не обратил внимания. И Гальтон, к примеру, так никогда и не узнал о них. Даже механизм оплодотворения - слияние ядер мужских и женских половых клеток - был открыт лишь в 1875 году. В 1888 г. в ядрах клеток были обнаружены тельца, названные хромосомами, а в 1909-м менделевские факторы наследования получили наименование генов. Первое искусственное оплодотворение (у кролика, а затем у обезьян) было произведено в 1934 году; и, наконец, в 1953-м было совершено фундаментальное открытие - установлена двойная спиральная структура ДНК. Как видим, все это произошло совсем недавно, так что ранние евгеники в общем-то были весьма мало осведомлены о технике своего дела.

Картирование генома человека находится все еще на ранней стадии. То, что мы знаем, - это малая крупица по сравнению с тем, чего мы не знаем. Существует три миллиарда нуклеотидных последовательностей, образующих от двадцати шести до тридцати восьми тысяч генов, которыми непосредственно кодируются белки. А вот как взаимодействуют гены и производимые ими белки, до сих пор плохо понятно.

Впрочем, роль генов в человеческом обществе довольно быстро осознается. В 1998 году Дайана Пол (Массачусетский университет) напомнила о том, что еще четырнадцать лет тому назад она назвала

«биологически детерминистской» точку зрения, согласно которой на различия в интеллекте и темпераменте влияют гены - используя эти термины так, словно их значение было конкретизировано. Сегодня их использование было бы спорным, так как эти ярлыки как бы ставят данную точку зрения под вопрос, в то время, как она широко принята и учеными, и общественностью» .

Как бы то ни было, наши знания пополняются буквально с каждым днем, и уже в самом недалеком будущем мы сумеем с большой точностью анализировать генетический груз, который мы навязываем будущим поколениям.

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора

Из книги Геном человека [Энциклопедия, написанная четырьмя буквами] автора Тарантул Вячеслав Залманович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Расшифрованная жизнь [Мой геном, моя жизнь] автора Вентер Крейг

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Из книги автора

Из книги автора

ЧАСТЬ I. СТРУКТУРА ГЕНОМА ЧЕЛОВЕКА ЧТО ТАКОЕ ГЕНОМ? Вопросы вечны, ответы обусловлены временем. Е. Чаргафф В диалоге с жизнью важен не ее вопрос, а наш ответ. М. И. Цветаева С самого начала определимся, что мы здесь будем подразумевать под словом геном. Сам этот термин

Из книги автора

Анализ суммарной ДНК - новые сведения о структуре генома человека На первом этапе непосредственного исследования структуры генома человека, когда еще не существовала методология генной инженерии, для изучения ДНК применяли традиционные физико-химические методы. В

Из книги автора

Из книги автора

ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА КОРОЛЕВА УМЕРЛА - ДА ЗДРАВСТВУЕТ КОРОЛЕВА! То, что мы знаем, - ограниченно, а то, чего мы не знаем, - бесконечно. П. Лаплас Наука всегда оказывается не права. Она никогда не решит вопроса, не поставив при этом десятка новых. Б. Шоу Итак,

Из книги автора

Чем полезен компьютер для изучения генома человека? Без компьютерных биоинформационных технологий (геноинформатики, или, в более широком смысле, - биоинформатики) развитие геномных исследований вообще едва ли было бы возможным. Даже трудно себе представить, как бы

Из книги автора

ЧАСТЬ III. ПРОИСХОЖДЕНИЕ И ЭВОЛЮЦИЯ ГЕНОМА ЧЕЛОВЕКА

Из книги автора

Насколько геном человека отличается от генома шимпанзе? Геномом называют совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Геном является характеристикой не отдельной особи, а вида организмов. В феврале 2001 года в американских

Из книги автора

Глава 11 Расшифровка генома человека Что вы скажете, когда, карабкаясь из последних сил к вершине горы, на которой еще никто не бывал, вдруг увидите человека, взбирающегося вверх параллельной тропой? В науке сотрудничество всегда гораздо плодотворнее,

Генетическое картирование. Методы картирования генов. Севостьянова Наталия Владимировна доктор медицинских наук, Профессор кафедры биологии и генетики

Слайд 2

План лекции Картирование генов. Хромосомные карты. Цитологические карты. Методы картирования генов. Тестирование мутаций на аллелизм. Хромосомные мутации.

Слайд 3

Генетическое картирование - это определение положения картируемого гена относительно других генов данной хромосомы. Чем больше генов известно у данного вида, тем точнее результаты.

Слайд 4

Генетическая карта хромосомы это схема взаимного расположения генов, находящихся в одной группе сцепления. Как известно, у D. melanogaster в диплоидном наборе четыре пары хромосом.

Слайд 5

Составить такую карту можно только для объектов, у которых изучено большое число мутантных генов Например, у дрозофилы идентифицировано свыше 500 генов, локализованных в 4 группах сцепления. I группа - половые хромосомы (XX - самки, XY - самцы), II, III, IV - аутосомы.

Слайд 6

У кукурузы - свыше 400 генов, распределенных в 10 группах сцепления

Слайд 7

Для составления генетических карт хромосом необходимо выявление множество мутантных генов и проведения многочисленных скрещиваний.

Слайд 8

Генетические карты хромосом составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют последовательно, по мере их обнаружения. Также указывают полные или сокращённые названия мутантных генов, их расстояния в морганидах. Обозначают место центромеры.

Слайд 9

У менее изученных объектов число обнаруженных групп сцепления меньше гаплоидного числа хромосом. У бактерий, которые являются гаплоидными организмами, имеется одна, чаще всего непрерывная, кольцевая хромосома и все гены образуют одну группу сцепления. Генетическая карта хромосомы кишечной палочки.

10

Слайд 10

Методы картирования генов Физические определение с помощью рестрикционных карт электронной микроскопии вариантов электрофореза межгенных расстояний – в нуклеотидах Генетические определение частот рекомбинаций между генами, в частности, в семейном анализе и др. Цитогенетические гибридизации in situ получение монохромосомных клеточных гибридов делеционный метод и др.

11

Слайд 11

Тестирование мутаций на аллелизм Функциональный тест на аллелизм, который позволяет определить, принадлежат ли мутантные аллели одному локусу или разным. Получают гибридов (гетерокарионов), у которых две исследуемые мутации находятся на разных гомологичных хромосомах - Транс-положение.

12

Слайд 12

Если обе мутации действуют на разные независимые функции (затрагивают два разных гена), то такой гибрид имеет дикий фенотип, так как образуется дигетерозигота, в которой нормальные аллели доминируют над мутантными. Если исследуемые мутации действуют на одну и ту же функцию (повреждают один и тот же ген), то гибрид должен иметь мутантный фенотип.

13

Слайд 13

Цис-тест - получают гибридов, у которых обе исследуемые мутации привнесены одним из родителей, тогда как в хромосомах других содержатся нормальные аллели. Гибриды с цис-положением мутаций должны иметь фенотип дикого типа независимо от того, относятся ли исследуемые мутации к одному или разным генам. Это причина редкого использования цис-теста.

14

Слайд 14

Для построения генетической карты хромосомы эукариот используют мейотический и митотический кроссинговер. Сравнение генетических карт хромосом, построенных разными методами у одного и того же вида, выявляет одинаковый порядок расположение генов, хотя расстояние между конкретными генами на мейотических и митотических генетических картах хромосом могут различаться. Некоторые из таких ошибок можно наблюдать, используя цитогенетические методы

15

Слайд 15

Мейотический кроссинговер - это сложный процесс, в ходе которого возможны ошибки. Кроссоверный обмен осуществляется по типу разрыв-воссоединение. Цитологической иллюстрацией этого механизма может служить мейотический кроссинговер между разноокрашенными сестринскими хроматидами. Иногда воссоединение хроматид происходит неправильно, и это может приводить к образованию дицентрических хромосом и ацентрических фрагментов.

16

Слайд 16

В норме генетические карты хромосом у эукариот линейные. При построении генетических карт хромосом у гетерозигот по транслокации получается генетическая карта хромосом в виде креста. Это указывает на то, что форма карт отражает характер конъюгации хромосом.

17

Слайд 17

Кроссоверные обмены с ошибками воссоединения хроматид называются U-обменами. U-обмены обнаружены у многих видов растений и животных. Наиболее подробно они изучены у ржи (Jones, Brumpton,1971). Частота U-конфигураций у ржи может достигать 30-40% на клетку, или 4-5% на бивалент. Частота несестринских U-обменов значительно выше, чем сестринских. Неправильное воссоединение хроматид может быть одним из факторов, приводящих к образованию несбалансированных гамет.

18

Слайд 18

Цитологическая карта составляется на основании изучения политенных хромосом, что позволяет сопоставить структуру синтезируемого белка с определенным участком хромосомы (геном), так как транскрибируемый участок определяется под микроскопом в виде пуфа. Это позволяет определить локализацию гена.

19

Слайд 19

Цитологическая карта хромосомы представляет собой фотографию или точный рисунок хромосомы, на котором отмечается последовательность расположения генов. Ее строят на основе сопоставления результатов анализирующего скрещивания и хромосомных перестроек. Например, если хромосома с доминантными генами будет последовательно терять отдельные локусы (при воздействии на нее мутагенов), то в гетерозиготе начнут проявляться рецессивные признаки. Порядок проявления признаков будет указывать на последовательность расположения генов.

20

Слайд 20

Метод цитологических карт основан на использовании хромосомных перестроек. При облучении и действии мутагенов в хромосомах часто наблюдаются потери (делеции) или вставки (дупликации) небольших фрагментов, сравнимых по величине с одним или несколькими локусами. Например, можно использовать гетерозиготы по хромосомам, одна из которых будет нести группу следующих друг за другом доминантных аллелей, а гомологичная ей - группу рецессивных аллелей тех же генов ABCDE /abcde. Если в хромосоме с доминантными генами произошла утрата отдельных генов, например DE, то у гетерозиготы ABC/abcde будут проявляться рецессивные признаки de. На этом принципе основан метод перекрывающихся делеции, используемый при построении цитологических карт!!!

21

Слайд 21

Цитогенетические карты хромосом составляются на основе дифференциальной окраски (темные и светлые полосы) и картирования генов в отдельных локусах хромосом.

22

Слайд 22

Цитогенетические карты дают информацию о расположении гена на хромосоме относительно ее участков, идентифицируемых методами дифференциального окрашивания. Благодаря такому окрашиванию хромосома в поле зрения микроскопа выглядит «поперечно исчерченной».

23

Слайд 23

Расположение окрашенных участков (бэндов) специфично для каждой хромосомы.

24

Слайд 24

Использование FISH-метода позволяет построить цитогенетические карты с разрешением 2-5 Мб, а его модификации для интерфазных хромосом - 0, 1 Мб. Таким образом, локализация картированного с помощью FISH-метода гена может быть установлена с точностью до субсегмента и локусабэнда.

25

Слайд 25

Картирование генов с помощью хромосомных мутаций Внутрихромосомные мутации – преобразование генетического материала в пределах одной хромосомы. Межхромосомные – перестройки, в результате которых две негомологичные хромосомы обмениваются своими участками. Хромосомные мутации – это изменения в структуре хромосом

26

Слайд 26

Инверсии Инверсии - хромосомные перестройки, связанные с поворотом отдельных участков хромосомы на 180°, были открыты А. Стёртевантом в 1926 г.

27

Слайд 27

Парацентрическая инверсия – происходят два разрыва хромосом, оба по одну сторону от центромеры. На участке между точками разрыва происходит поворот 180. Перицентрическая инверсия – точки разрывов расположены по обе стороны от центромеры.

28

Слайд 28

У особей, гетерозиготных по инверсии, в хромосомах образуется петля. У гомозиготных особей по инверсиям кроссинговер происходит без изменений.


29

Слайд 29

У гетерозиготных особей по парацентрической инверсии происходит «запирание» кроссинговера следующим образом: в случае перекреста между генами С и D образуются два продукта: ацентрические хромосомы и дицентрические хромосомы, т. е. без центромеры и с двумя центромерами соответственно. Обе комбинации летальны.

30

Слайд 30

Дицентрик образует «хромосомный мост» в анафазе 1 мейоза, который виден под микроскопом. Обе комбинации летальны. Таким образом, в результате кроссинговера образуются нежизнеспособные гаметы, и потомства нет.

31

Слайд 31

При перицентрической инверсии, в случае перекреста между генами С и Д, также получаются два продукта. Дупликация А и делеция F. Каждая из полученных хромосом несет дупликацию одного неинвертированного района хромосом и делецию другого. В результате такие гаметы нежизнеспособны и кроссоверы не выявляются. Так же как и парацентрические, перицентрические инверсии «запирают» кроссинговер. Поскольку кроссинговер в инвертированном участке хромосомы «заперт », в нем могут формироваться блоки мутаций, отличные от тех, которые локализованы в гомологичном фрагменте хромосомы, но не инвертированном. Это явление называют инверсионный полиморфизм популяций.

32

Слайд 32

Хромосомы с множественными инверсиями используют при создании балансеров, т. е. линий, позволяющих поддерживать летальные мутации и мутации по плодовитости. Один из примеров - линия С L В. Более надежными балансерами, т. е. содержащими несколько инверсий, являются линии Base, Binsn. Конструирование балансерных хромосом по существу представляет собой первый пример генетической инженерии. Другой пример балансеров - линия Су (загнутые крылья, летальность), в которой доминантная мутация сопряжена с длинной инверсией, захватывающей почти всю вторую хромосому. В потомстве от скрещивания гетерозигот по Су выживают только мухи родительских классов, т. е. линия сбалансирована, и исследуемая леталь /, постоянно в ней поддерживается в гетерозиготном состоянии.

33

Слайд 33

Использование делеций для локализации генов было названо методом делеционного картирования. Делеции Делеция – утрата участка хромосомы. Делеции были открыты в 1917 г. К. Бриджесом генетическими методами. В нормальной хромосоме гены расположены в определенном порядке: tABCDEF При потере фрагмента хромосомы возможны два принципиальных варианта: ABEF или ABC т. е. может быть потеряна средняя или концевая часть хромосомы.

34

Слайд 34

Транслокации Хромосомные перестройки, в результате которых часть хромосомы переноситься в другое место этой же хромосомы или на другую хромосому. Но общее число генов не меняется!!! Транслокации были открыты К. Бриджесом в 1923 г. у дрозофилы.

35

Слайд 35

Внутрихромосомные транслокации возникают в результате образования трех разрывов и перенесения хромосомного сегмента в другой район той же хромосомы. Межхромосомные реципрокные транслокации возникают в результате образования двух разрывов и обмена участками негомологичных хромосом.

36

Слайд 36

Две хромосомы в результате реципрокного обмена фрагментами образуют гетерозиготную транслокацию. Если образуются три разрыва и фрагмент хромосомы удаляется из одной хромосомы и встраивается в другую - это инсерционная транслокация.

37

Слайд 37

Самым ярким примером, когда с помощью транслокации был картирован ген, является миопатия Дюшенна. Ген миопатии Дюшенна локализован в X хромосоме и обычно проявляется тяжелой миопатией у мальчиков. Однако обнаружили несколько случаев типичной клинической картины миопатии у женщин. Они оказались связанными с транслокациями между хромосомой X и аутосомами, причем в хромосоме X разрыв всегда локализовался в районе Хр21.

38

Слайд 38

Картирование гена иногда может быть достигнуто за счет использования эффекта дозы гена. В случае делеции следует ожидать уменьшение на 50 % продукта гена (это прежде всего может быть фермент). Именно таким способом был картирован ген кислой фосфатазы эритроцитов в хромосоме 2.

После краткого рассмотрения основных методов, наиболее часто используемых в молекулярной генетике для исследования структуры и механизмов функционирования генов, представляется целесообразным на примере генома человека подробнее познакомиться с практическим применением этих методов и их модификаций для изучения больших геномов. В целях всестороннего исследования генома человека, этого колоссального по объему хранилища его генетической информации, недавно была разработана и воплощается в жизнь специальная международная программа "Геном человека" ("Human Genome Project"). Основной задачей программы является построение исчерпывающих генетических карт большого разрешения каждой из 24 хромосом человека, которое, в конечном счете, должно завершиться определением полной первичной структуры ДНК этих хромосом. В настоящее время работы по проекту идут полным ходом. В случае успешного его завершения (а это по планам должно произойти в 2003 г.) у человечества появятся перспективы досконального изучения функциональной значимости и механизмов функционирования каждого из его генов, а также генетических механизмов, управляющих биологией человека, и установления причин большинства патологических состояний его организма.

    1. Основные подходы к картированию генома человека

Решение основной задачи программы "Геном человека" включает три основных этапа. На первом этапе необходимо специфическим образом разделить каждую индивидуальную хромосому на части меньшего размера, позволяющего их дальнейший анализ известными методами. Вторая стадия исследований предполагает определение взаимного расположения этих индивидуальных фрагментов ДНК друг относительно друга и их локализации в самих хромосомах. На завершающем этапе необходимо произвести собственно определение первичной структуры ДНК каждого из охарактеризованных фрагментов хромосом и составить полную непрерывную последовательность их нуклеотидов. Решение задачи не будет полным, если в найденных последовательностях нуклеотидов не удастся локализовать все гены организма и определить их функциональное значение. Прохождение трех вышеперечисленных этапов требуется не только для получения исчерпывающих характеристик генома человека, но и любого другого генома большого размера.

      1. Генетические карты сцепления

Генетические карты сцепления представляют собой одномерные схемы взаимного расположения генетических маркеров на индивидуальных хромосомах. Под генетическими маркерами понимают любые наследуемые фенотипические признаки, различающиеся у отдельных особей. Фенотипические признаки, отвечающие требованиям генетических маркеров, весьма разнообразны. Они включают в себя как особенности поведения или предрасположенность к определенным заболеваниям, так и морфологические признаки целых организмов или их макромолекул, различающихся по структуре. С развитием простых и эффективных методов исследования биологических макромолекул такие признаки, известные под названием молекулярных маркеров , стали наиболее часто использоваться при построении генетических карт сцепления. Прежде чем перейти к рассмотрению методов построения таких карт и их значения для исследования генома, необходимо напомнить, что термин "сцепление " употребляется в генетике для обозначения вероятности совместной передачи двух признаков от одного из родителей потомству.

При образовании половых клеток (гамет) у животных и растений на стадии мейоза, как правило, происходит синапсис (конъюгация) гомологичных хромосом. Сестринские хроматиды гомологичных хромосом соединяются по всей длине друг с другом, и в результате кроссинговера (генетической рекомбинации между хроматидами) происходит обмен их частями. Чем дальше два генетических маркера располагаются друг от друга на хроматиде, тем больше вероятность того, что разрыв хроматиды, необходимый для кроссинговера, произойдет между ними, и два маркера в новой хромосоме, принадлежащей новой гамете, окажутся отделенными друг от друга, т.е. их сцепление нарушится. Единицей сцепления генетических маркеров является морганида (единица Моргана, М), которая содержит 100 сантиморганид (сМ). 1 сМ соответствует физическому расстоянию на генетической карте между двумя маркерами, рекомбинация между которыми происходит с частотой 1%. Выраженная в парах оснований 1 сМ соответствует 1 млн п.о. (м.п.о.) ДНК.

Генетические карты сцепления правильно отражают порядок расположения генетических маркеров на хромосомах, однако полученные при этом значения расстояний между ними не соответствуют реальным физическим расстояниям. Обычно данный факт связывают с тем, что эффективность рекомбинации между хроматидами на отдельных участках хромосом может сильно различаться. В частности, она подавлена в гетерохроматиновых участках хромосом. С другой стороны, в хромосомах часто встречаются "горячие точки" рекомбинации. Использование частот рекомбинации для построения физических генетических карт без учета этих факторов будет приводить к искажениям (соответственно занижению или завышению) реальных расстояний между генетическими маркерами. Таким образом, генетические карты сцепления являются наименее точными из всех имеющихся типов генетических карт, и их можно рассматривать только в качестве первого приближения к реальным физическим картам. Тем не менее, на практике именно они и только они позволяют локализовать сложные генетические маркеры (например ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения. Необходимо помнить, что в отсутствие кроссинговера все гены, находящиеся на индивидуальной хромосоме, передавались бы от родителей потомству вместе, поскольку они физически сцеплены друг с другом. Поэтому индивидуальные хромосомы образуют группы сцепления генов, и одной из первых задач построения генетических карт сцепления является отнесение исследуемого гена или последовательности нуклеотидов к конкретной группе сцепления. В табл. II.4 перечислены современные методы, которые, по данным В.А. МакКьюзика, наиболее часто использовались для построения генетических карт сцепления до конца 1990 г.

Картирование генов gene mapping, mapping - картирование генов.

Oпределение положения данного гена на какой-либо хромосоме относительно других генов; используют три основные группы методов К.г. - физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза межгенных расстояний - в нуклеотидах), генетическое (определение частот рекомбинаций между генами, в частности, в семейном анализе и др.) и цитогенетическое (гибридизации in situ <in situ hybridization >, получение монохромосомных клеточных гибридов <monochromosomal cell hybrid >, делеционный метод <deletion mapping > и др.); в генетике человека приняты 4 степени надежности локализации данного гена - подтвержденная (установлена в двух и более независимых лабораториях или на материале двух и более независимых тест-объектов), предварительная (1 лаборатория или 1 анализируемая семья), противоречивая (несовпадение данных разных исследователей), сомнительная (не уточненные окончательно данные одной лаборатории); в Приложении 5 приведена сводка (по состоянию на 1992-93) структурных генов, онкогенов и псевдогенов в геномах человека и - включая некоторые мутации - мыши.

(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)


Смотреть что такое "картирование генов" в других словарях:

    картирование генов - Определение положения данного гена на какой либо хромосоме относительно других генов; используют три основные группы методов К.г. физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза… …

    Картирование генов - определение положения данного гена на какой либо хромосоме относительно других генов. Генетическое картирование предполагает определение расстояний по частоте рекомбинаций между генами. Физическое картирование использует некоторые методы… … Словарь по психогенетике

    картирование [генов] с помощью бэккроссирования - Генетический метод картирования, основанный на получении бэккроссных гибридов родственных форм и анализе расщепления вариантов аллелей, полиморфных по длинам рестрикционных фрагментов; наиболее распространен данный метод в картировании генов у… … Справочник технического переводчика

    Backcross mapping картирование [генов] с помощью бэккроссирования. Генетический метод картирования, основанный на получении бэккроссных гибридов родственных форм и анализе расщепления вариантов аллелей, полиморфных по длинам рестрикционных… …

    Картирование сравнительное генов млекопитающих - * картаванне параўнальнае генаў млекакормячых * comparative mapping of mammalian genes информативное сопоставление генетических карт человека и любого из др. видов млекопитающих). Они должны быть одновременно хорошо изучены и далеко отстоять друг …

    Картирование - * картаванне * mapping установление позиций генов или каких то определенных сайтов (см.) вдоль нити ДНК (. Карта) … Генетика. Энциклопедический словарь

    Картирование с помощью облученных гибридов [клеток] - * картаванне з дапамогай апрамененых гібрыдаў [клетак] * radiated hybrid mapping модификация метода картирования генов с использованием гибридизации соматических клеток. Клетки гибридного клона «грызун Ч человек», содержащие только хромосому 1… … Генетика. Энциклопедический словарь

    Radiation hybrid mapping картирование с помощью облученных гибридов [клеток]. Модификация метода картирования генов с использованием гибридизации соматических клеток клетки гибридного клона “грызун ˟ человек”, содержащие только 1 хромосому… … Молекулярная биология и генетика. Толковый словарь.

    Установление порядка расположения генов и относительного расстояния между ними в группе сцепления … Большой медицинский словарь

Генетические карты хромосом - это схема взаимного расположения и относительных расстояний между генами определенныххромосом, находящихся в одной группе сцепления.

Впервые в 1913 - 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом . Возможность картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетические карты разных видов живых организмов. Помимо генетических, существуют и другие карты хромосом.

Физическая карта – графическое представление порядка следования физических маркеров (фрагментов молекулы ДНК), расстояние между которыми определяется в парах нуклеотидов.

Рестрикционная карта – вид физической карты, на которой указан порядок следования и расстояния между сайтами расщепления ДНК рестриктазами (обычно участок узнавания рестриктазы 4-6 п.н.). Маркерами этой карты являются рестрикционные фрагменты/сайты рестрикции.

Картирование хромосом- Определение положения данного гена на какой-либо хромосоме относительно других генов. Используют три основные группы методов картирования генов – физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза межгенных расстояний – в нуклеотидах), генетическое (определение частот рекомбинаций между генами, в частности, в семейном анализе и др.) и цитогенетическое (гибридизации in situ, получение монохромосомных клеточных гибридов, делеционный метод и др.). В генетике человека приняты 4 степени надежности локализации данного гена – подтвержденная (установлена в двух и более независимых лабораториях или на материале двух и более независимых тест-объектов), предварительная (1 лаборатория или 1 анализируемая семья), противоречивая (несовпадение данных разных исследователей), сомнительная (не уточненные окончательно данные одной лаборатории).

На сегодняшний день не существует четкой классификации методов картирования. Так, например, одни авторы относят цитогенетические методы (FISH, PRINS и т.п.) к генетическим методам, другие к физическим. Однако, следует помнить, что по сути все методы являются генетическими, так как конечный результат картирования - получение максимально подробной карты взаимного расположения структурных, функциональных и полиморфных последовательностей генома и определение расстояний между ними. Поэтому разделение методов картирования на генетические, цитогенетические и физические, предложенное в этой статье, основано исключительно на методических подходах, используемых для построения генетических карт.

Генетическое картирование - это картирование, основанное на методах классической генетики - определении групп сцепления, частоты рекомбинации и построении генетических карт, где единицей измерения служат проценты рекомбинации, или сантиморганы (сМ). Цитогенетическое картированиефизическое картирование - это обширная группа методов, позволяющая строить карты генома (обычно их называют физическими) высокого уровня разрешения и определять расстояния между локализуемыми нуклеотидными последовательностями с точностью от нескольких десятков тысяч п.н. до одной нуклеотидной пары. осуществляется с применением методов цитогенетики, когда для локализации каких-либо нуклеотидных последовательностей и определения их взаимного расположения используются цитологические препараты. И, наконец,

Стратегические подходы к картированию геномов

В настоящее время выделяют три основных подхода к картированию геномов, различающихся временем появления, необходимой методической базой и спектром возможностей: функциональный, кандидатный и позиционный (рис. 1).

Рис. 1.

Вплоть до последнего времени в картировании доминировал функциональный подход, основанный на априорном наличии некоторой информации о биохимическом полиморфизме, лежащем в основе того или иного наследственного признака. Методически такое картирование начинается с выделения в чистом виде белкового продукта гена. Далее к нему по аминокислотной последовательности подбирают вырожденные праймеры и проводят ПЦР-скрининг геномных библиотек. Однако список генов, для которых эта информация была достаточно полной к настоящему времени практически исчерпан и большинство генов, функция которых была известна, уже клонированы и локализованы.

Близко к функциональному и кандидатное картирование. В этом случае информация о функциональном изменении недостаточно полна, чтобы точно указать ген, однако достаточна для того, чтобы выдвинуть более или менее обоснованные предположения о возможных кандидатах либо по их функции, либо по положению на хромосоме. Важно подчеркнуть, что и при функциональном, и при кандидатном подходе клонирование гена, как правило, предшествует его точной локализации в геноме, т.е. картированию. В рамках этих подходов локализовать ген означало пройти путь от его функции к локализации на хромосоме (позиции). Такой путь принято считать выражением стратегии "прямой генетики", он характерен и для традиционных методов генетического и цитогенетического картирования. До недавнего времени другой путь был практически невозможен.

Появление в конце 80-х годов множества высокополиморфных ДНК-маркеров дало возможность пойти в обратном направлении - от хромосомной карты к функции. Стратегия "обратной генетики", применительно к поиску генов, получила воплощение в позиционном картировании, которое подразумевает локализацию гена при отсутствии всякой функциональной информации о нем. При этом его место на карте устанавливают по результатам анализа сцепления гена с ранее локализоваными генетическими маркерами и далее детально исследуется уже область генома рядом с маркером.

Главным ограничением позиционного подхода является низкая разрешающая способность генетических карт - интервал между двумя соседними маркерами, в котором локализован ген, может оказаться слишком велик и недоступен физическому картированию.

Для большинства генов, которые были локализованы, характерны структурные аномалии (как правило, это гены, ответственные за наследственные заболевания человека), что существенно облегчает заключительную стадию поиска гена - выделение и локализацию гена.

Способом, который позволяет преодолеть ограничения позиционного картирования, является объединение стратегии "обратной генетики" с преимуществами кандидатного подхода. Такой способ картирования, называемый позиционно-кандидатным, постепенно приходит на смену позиционному и заключается в поиске на выявленном участке генома подходящих кандидатных генов.


Похожая информация.



Top