История открытия электромагнитных волн. Презентация на тему электромагнитные волны Распространение электромагнитных волн презентация


Электромагнитная волна - процесс распространения электромагнитного поля в пространстве. Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.


Волна (волновой процесс) - процесс распространения колебаний в сплошной среде . При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояния колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества


Принцип Гюйгенса. Каждая точка среды, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн даёт положение волнового фронта в следующий момент времени.


Электромагнитные волны распространяются в вакууме со скоростью, не зависящей от скорости источника или приёмника излучения и равной С. Амплитуда колебаний всех электромагнитных волн одинакова, волны различаются лишь частотой (длинной волны), фазой, степенью поляризации и скоростью изменения этой поляризации






«Электромагнитные волны и их свойства» - Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Облучение в больших дозах вызывает лучевую болезнь. Регистрируют тепловыми методами, фотоэлектрическими и фотографическими. Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового).

«Волны электромагнитные» - Применение: Радиосвязь, телевидение, радиолокация. Получаются с помощью колебательных контуров и макроскопических вибраторов. Природа электромагнитной волны. Радиоволны Инфракрасное Ультрафиолетовое Рентгеновское?-излучение. Применение: в медицине, в промышленности. Применение: В медицине, производстве (? -дефектоскопия).

«Трансформатор» - 5. От чего и как зависит ЭДС индукции в катушке из проводника. Когда трансформатор повышает электрическое напряжение? P1 =. 8. 2. 16. N1, N2 – число витков первичной и вторичной обмоток. 12. 18. Можно ли повышающий трансформатор сделать понижающим? Какой прибор нужно подключить между источником переменного тока и лампочкой?

«Электромагнитные колебания» - 80Гц. Эксперимент. 100в. 4Гн. Максимальное смещение тела от положения равновесия. Радиан в секунду (рад/ с). Этап подготовки учащихся к активному и созидательному усвоению материала. Электромагнитные колебания. Уравнения i=i(t)имеет вид: А. i= -0,05 sin500t Б. i= 500 sin500t В. i= 50 cos500t. Выполни задание!

«Шкала электромагнитных волн» - 1. Шкала электромагнитных излучений.

«Электромагнитное излучение» - Яйцо под излучением. Цели и задачи. Выводы и рекомендации. Цель: Исследовать электромагнитное излучение сотового телефона. Рекомендации: Снизить время общения по мобильному телефону. Исследование электромагнитного излучения сотового телефона. Для замеров я использовал оборудование MultiLab вер. 1.4.20.

Электромагнитное поле

Слайдов: 10 Слов: 364 Звуков: 0 Эффектов: 31

Электромагнитное поле. Теория электромагнитного поля. Покоящийся заряд создает электрическое поле. Но ведь заряд покоится лишь относительно определенной системы отсчета. Лежащий на столе магнит создает только магнитное поле. Вывод: электрические и магнитные поля – проявление единого целого: электромагнитного поля. Источником электромагнитного поля служат ускоренно движущиеся электрические заряды. Что такое электромагнитная волна? Какова природа электромагнитной волны? Существование электромагнитных волн было предсказано Дж. Причины возникновения электромагнитных волн. Представим себе проводник, по которому течет электрический ток. - Электромагнитное поле.ppt

Электромагнитное поле физика

Слайдов: 28 Слов: 1020 Звуков: 0 Эффектов: 0

Формирование электромагнитной картины мира. Эмпирическая база создания теории электромагнитных явлений. Закон Кулона (Шарль Огюстен де Кулон 1736-1806). «Электрические силы ослабевают обратно пропорционально квадрату расстояния». 1780 г. Датский физик Ханс Кристиан Эрстед (1777-1851). Электрический ток создает вокруг себя магнитное поле. 1819 г. Андре Мари Ампер (1775 -1836). Отрицал существование магнитных зарядов. Силовые линии поля – потоки или распространяющиеся колебания. Гипотеза о существовании электромагнитного поля и электромагнитных волн. Книга: «Динамическая теория электромагнитного поля», 1864 г. - Электромагнитное поле физика.PPT

Теория электромагнитного поля

Слайдов: 16 Слов: 1407 Звуков: 0 Эффектов: 17

Электромагнитное поле. Пояснительная записка. Учебно-методический комплекс. Логическая структура раздела. Влияние на развитие техники и технологии. Сущность. Формирование представления о научной картине мира. Психолого-педагогическое объяснение специфики восприятия. Ожидаемые результаты освоения раздела программы. Описывать и объяснять физические явления. Методы обучения. Система знаний. Выполнение фронтальных лабораторных работ. Календарно – тематическое планирование по разделу. - Теория электромагнитного поля.ppt

Электромагнитные поля и излучения

Слайдов: 10 Слов: 595 Звуков: 0 Эффектов: 9

Электромагнитное поле. Движущийся магнит. Условия существования полей. Попробуй реши. Электромагнитные волны. Свойства электромагнитных волн. Шкала электромагнитных волн. Рефераты. Решаем задачи. Железобетонные дома. - Электромагнитные поля и излучения.ppt

Волны электромагнитные

Слайдов: 17 Слов: 839 Звуков: 0 Эффектов: 40

Электромагнитные волны. Природа электромагнитной волны. Образование ЭМВ волны. Электромагнитная волна является поперечной. Историческая справка. В 1895году А.С. Попов продемонстрировал практическое применение ЭМВ для радиосвязи. Электромагнитные волны разных частот отличаются друг от друга. Радиоволны. Получаются с помощью колебательных контуров и макроскопических вибраторов. Применение: Радиосвязь, телевидение, радиолокация. Инфракрасное излучение (тепловое). Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Видимое излучение. - Волны электромагнитные.ppt

Электромагнитные волны

Слайдов: 71 Слов: 2935 Звуков: 0 Эффектов: 0

Лекция 4. Электромагнитные волны. Лекция 4. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. 4.2 Дифференциальное уравнение ЭМВ. 4.3 Экспериментальное исследование ЭМВ. 4.4 Энергия и импульс ЭМП. Герц Генрих Рудольф (1857 – 1894) – немецкий физик. Окончил Берлинский университет (1880 г.) и был ассистентом у Г. Гельмгольца. В 1885 – 89 гг. – профессор Высшей технической школы в Карлсруэ. В окружающем конденсатор и катушку пространстве поля практически равны нулю… Вибратор Герца. Вибратор. R – разрядник; Т - газоразрядная трубка; D – дроссели. Резонатор. Движущийся с ускорением электрический заряд испускает электромагнитные волны. - Электромагнитные волны.ppt

Электромагнитные волны урок

Слайдов: 13 Слов: 322 Звуков: 0 Эффектов: 14

Спектр электромагнитных волн. Этапы урока. Цель урока: Развитие естественно - научного миропонимания. Задачи урока: Гамма-излучение. Радиоволны. Видимый свет. Рентгеновское излучение. Инфракрасное излучение. Ультрафиолетовое излучение. К какому виду излучений принадлежат электромагнитные волны с длиной 0,1 мм? 1.Радиоизлучение 2.Рентгеновское 3.Ультрафиолетовое и рентгеновское 4.Радиоизлучение и инфракрасное. Укажите интервал длин волн видимого света в вакууме. Какой вид излучения обладает наибольшей проникающей способностью? 1. Ультрафиолетовое 2.Рентгеновское 3.Инфракрасное 4.?–Излучение. - Электромагнитные волны урок.ppt

Физика электромагнитные волны

Слайдов: 19 Слов: 669 Звуков: 5 Эффектов: 44

Электромагнитное поле. Электромагнитные волны. Повторение: Что такое электрическое поле? На что действует? Что такое магнитное поле? Что такое электромагнитное поле? Где возникает? Как распространяется? Джеймс Клерк Максвелл. Переменное магнитное поле создает переменное электрическое поле и наоборот. Так возникает электромагнитное поле. Максвелл выразил законы электромагнитного поля в виде системы 4 дифференциальных уравнений. ЭМ поле распространяется в виде ЭМ волн. Существование электромагнитных волн было предсказано М. Фарадеем в 1832. Майкл Фарадей. Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. - Физика электромагнитные волны.ppt

«Электромагнитные волны» 11 класс

Слайдов: 26 Слов: 801 Звуков: 0 Эффектов: 2

Электромагнитное поле. Цель. Задачи. Гипотеза. Актуальность. План. Теоретическая часть. Гипотеза Максвелла. Определение. Электромагнитная волна. Расположение векторов E, B и V в пространстве. Электромагнитная волна поперечная. Основные формулы. Колебательные контуры. Свойства электромагнитных волн. Закон отражения волн. Закон преломления волн. Интерференция. Дифракция. Поляризация. Характеристики электромагнитных волн. Практическая часть. Решение задач из части А ЕГЭ по физике за 2007 год. Перенос энергии. Катушка приемного контура радиоприемника. - «Электромагнитные волны» 11 класс.ppt

Свойства электромагнитных волн

Слайдов: 12 Слов: 751 Звуков: 0 Эффектов: 0

Характеристика и свойства электромагнитных волн. Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн. Излучение єлектромагнитных волн. Гармонические колебания генератора изменяют (модулируют) в такт с колебаниями звуковой частоты. Принятый сигнал после преобразования (детектирования) подается на громкоговоритель. Электромагнитные волны излучаются рупорной антенной в направлении оси рупора. Общий вид установки изображен на рисунке. Поглощение и отражение электромагнитных волн. Электромагнитные волны не достигают приемника вследствие отражения. - Свойства электромагнитных волн.pptx

Электромагнитные волны и их свойства

Слайдов: 21 Слов: 1592 Звуков: 0 Эффектов: 42

Электромагнитные волны. Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Шкала электромагнитных волн. История открытия электромагнитных волн. Радиоволны. Применение Радиосвязь, телевидение, радиолокация. Длинные волны. Длинные волны хорошо дифрагируют вокруг сферической поверхности Земли. Условия распространения сверхдлинных радиоволн исследуют, наблюдая за грозами. Основная часть энергии импульса грозового разряда приходится на диапазон колебаний. Средние волны. Средние волны используются главным образом для вещания. - Электромагнитные волны и их свойства.ppt

Действие электромагнитного поля

Слайдов: 19 Слов: 808 Звуков: 0 Эффектов: 0

Электромагнитное поле. Развитие взглядов на природу света. Источники электрического поля. Какое поле можно обнаружить вокруг неподвижной расчески. Железный сердечник. Способы усиления магнитного поля. Магнитные полюсы катушки. Проводник. Допущена ошибка. Преобразования. Преобразования энергии. Магнитный поток. Сила тока. Электромагнитная волна. Длина электромагнитной волны. Материал. - Действие электромагнитного поля.ppt

Влияние электромагнитного поля

Слайдов: 45 Слов: 1815 Звуков: 0 Эффектов: 0

Влияние электромагнитного поля на биологические объекты. Цели и задачи проекта. Цели. Введение. Некоторые отклонения наблюдаются лишь в периоды солнечной активности. Ухудшение состояние больных. Основные определения. Причины существования электромагнитного поля. Северный географический полюс. Земная магнитосфера защищает нашу планету от солнечного ветра. Магнитные бури – это возмущение магнитного поля Земли. Увеличивается число аварий на автомагистралях. Магнитные бури влияют на погоду и климат на Земле. Влияние магнитного поля на человека. Влияние на нервную систему. - Влияние электромагнитного поля.ppt

Влияние бытовых приборов на человека

Слайдов: 13 Слов: 606 Звуков: 0 Эффектов: 74

Бытовые приборы и здоровье человека. Показать как бытовые приборы влияют на здоровье человека. Изучить вопросы, связанные с воздействием бытовых приборов на здоровье человека. Радиоактивные вещества приводят к страшнейшим заболеваниям. Человеческий организм очень чувствителен к электромагнитному излучению. Особую опасность электромагнитные излучения представляют детям и беременным женщинам. В быту используют разнообразные электрические приборы и машины. По способу преобразования электрической энергии бытовые приборы делят на: Электронагревательные. Электромеханические. -

Слайд 2

Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью

Слайд 3

шкала электромагнитных волн

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

Слайд 4

история открытия электромагнитных волн

1831 – Майкл Фарадей установил, что любое изменение магнитного поля вызывает появление в окружающем пространстве индукционного (вихревого) электрического поля

Слайд 5

1864 – Джеймс - Клерк Максвелл высказал гипотезу о существовании электромагнитных волн, способных распространятся в вакууме и диэлектриках. Однажды начавшийся в некоторой точке процесс изменения электромагнитного поля будет непрерывно захватывать новые области пространства. Это и есть электромагнитная волна

Слайд 6

1887 - Генрих Герц опубликовал работу "О весьма быстрых электрических колебаниях", где описал свою экспериментальную установку - вибратор и резонатор, - и свои опыты. При электрических колебаниях в вибраторе в пространстве вокруг него возникает вихревое переменное электромагнитное поле, которое регистрируется резонатором

Слайд 7

радиоволны

Длины волн охватывают область от 1 мкм до 50 км Их получают с помощью колебательных контуров и макроскопических вибраторов Свойства: Радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции. Применение Радиосвязь, телевидение, радиолокация.

Слайд 8

Длинные волны

Радиоволны длиной от 1000 до 10000 м называют длинными (частота 300-30 кГц), а радиоволны длиной свыше 10000 м - сверхдлинными (частота менее 30 кГц). Длинные и особенно сверхдлинные волны мало поглощаются при прохождении в толще суши или моря. Так, волны длиной 20-30 км могут проникать в глубину моря на несколько десятков метров и, следовательно, могут использоваться для связи с погруженными подводными лодками, а также для подземной радиосвязи. Длинные волны хорошо дифрагируют вокруг сферической поверхности Земли. Это обусловливает возможность распространения длинных и сверхдлинных волн земной волной на расстояние порядка 3000 км. Основное преимущество длинных волн - большая устойчивость напряженности электрического поля: сила сигнала на линии связи мало меняется в течение суток и в течение года и не подвержена случайным изменениям. Достаточную для приема напряженность электрического поля можно обеспечить на расстоянии более 20 000 км, но для этого требуются мощные передатчики и громоздкие антенны. Недостатком длинных волн является невозможность передачи широкой полосы частот, необходимой для трансляции разговорной речи или музыки. В настоящее время длинные и сверхдлинные радиоволны применяются главным образом для телеграфной связи на дальние расстояния, а также для навигации. Условия распространения сверхдлинных радиоволн исследуют, наблюдая за грозами. Грозовой разряд представляет собой импульс тока, содержащий колебания различных частот-от сотен герц до десятков мегагерц. Основная часть энергии импульса грозового разряда приходится на диапазон колебаний

Слайд 9

Средние волны

К средним волнам относятся радиоволны длиной от 100 до 1000 м (частоты 3-0,3 МГц). Средние волны используются главным образом для вещания. Они могут распространяться как земные и как ионосферные волны Средние волны испытывают значительное поглощение в полупроводящей поверхности Земли, дальность распространения земной волны ограничена расстоянием 500-700 км. На большие расстояния радиоволны распространяются ионосферной волной В ночное время средние волны распространяются путем отражения от слоя ионосферы, электронная плотность которого оказывается достаточной для этого. В дневные часы на пути распространения волны расположен слой, чрезвычайно сильно поглощающий средние волны. Поэтому при обычных мощностях передатчиков напряженность электрического поля недостаточна для приема, и в дневные часы распространение средних волн происходит практически только земной волной на сравнительно небольшие расстояния (порядка 1000 км). В диапазоне средних волн более длинные волны испытывают меньшее поглощение, и напряженность электрического поля ионосферной волны больше на более длинных волнах. Поглощение увеличивается в летние месяцы и уменьшается в зимние месяцы. Ионосферные возмущения не влияют на распространение средних волн, так как слой мало нарушается во время ионосферно-магнитных бурь.

Слайд 10

Короткие волны

К коротким волнам относятся радиоволны длиной от 100 до 10 м (частоты 3-30 МГц). Преимуществом работы на коротких волнах по сравнению с работой на более длинных волнах является то, что в этом диапазоне можно создать направленные антенны. Короткие волны могут распространяться как земные и как ионосферные. С повышением частоты сильно возрастает поглощение волн в полупроводящей поверхности Земли. Поэтому при обычных мощностях передатчика земные волны коротковолнового диапазона распространяются на расстояния, не превышающие нескольких десятков километров Ионосферной волной короткие волны могут распространяться на многие тысячи километров, причем для этого не требуется передатчиков большой мощности. Поэтому в настоящее время короткие волны используются главным образом для связи и вещания на большие расстояния.

Слайд 11

Ультрокороткие волны

Радиоволны длиной менее 10 м (более 30 Мгц). Волны ультракороткие подразделяются на волны метровые (10-1 м), дециметровые (1 м- 10 см), сантиметровые (10-1 см) и миллиметровые (менее 1 см). Основное распространение в радиолокационной технике получили сантиметровые волны. При расчете дальности системы самолетовождения и бомбометания на ультракороткие волны предполагается, что последние распространяются по закону прямой (оптической) видимости, не отражаясь от ионизированных слоев. Системы на ультракоротких волнах более помехоустойчивы к искусственным радиопомехам, чем системы на средних и длинных волнах. Ультракороткие волны по своим свойствам наиболее близки к световым лучам. Они в основном распространяются прямолинейно и сильно поглощаются землей, растительным миром, различными сооружениями, предметами. Поэтому уверенный прием сигналов ультракоротковолновых станций поверхностной волной возможен главным образом тогда, когда между антеннами передатчика и приемника можно мысленно провести прямую линию, не встречающую по всей длине каких-либо препятствий в виде гор, возвышенностей, лесов. Ионосфера же для ультракоротких волн подобно стеклу для света - "прозрачна". Ультракороткие волны почти беспрепятственно проходят через нее. Поэтому-то этот диапазон волн используют для связи с искусственными спутниками Земли, космическими кораблями и между ними. Но наземная дальность действия даже мощной ультракоротковолновой станции не превышает, как правило, 100-200 км. Лишь путь наиболее длинных волн этого диапазона (8-9 м) несколько искривляется нижним слоем ионосферы, который как бы пригибает их к земле. Благодаря этому расстояние, на котором возможен прием ультракоротковолнового передатчика, может быть большим. Иногда, однако, передачи ультракоротковолновых станций слышны на расстояниях в сотни и тысячи километров от них.

Слайд 12

инфракрасное излучение

Излучается атомами и молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Человек тоже излучает электромагнитные волны Свойства: проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег. Производит химическое действие на фотопластинки. Поглощаясь веществом, нагревает его. Вызывает внутренний фотоэффект у германия. Невидимо. Способно к явлениям интерференции и дифракции. Регистрируют тепловыми методами, фотоэлектрическими и фотографическими. Применение: получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов

Слайд 13

Инфракрасное излучение возникает при электронных переходах с одного энергетического уровня на другой в атомах и молекулах. При этом диапазон инфракрасного излучения частично перекрывается радиоволнами. Границы между ними весьма условны и определяются способом получения волн.Инфракрасное излучение впервые обнаружил в 1800 году У. Гершель. Он же установил, что инфракрасное излучение подчиняется законам отражения и преломления.Для регистрации инфракрасного излучения, близкого к видимому, используют фотографический метод. В других диапазонах применяют термопары и болометры.

Слайд 14

видимый свет

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового). Диапазон длин волн занимает небольшой интервал приблизительно от 390 до750 нм. Свойства: отражается, преломляется, воздействует на глаз, способен к явлениям дисперсии, интерференции, дифракции, т.е. ко всем явлениям, характерным для электромагнитных волн

Слайд 15

Первые теории о природе света - корпускулярная и волновая - появились в середине 17 века. Согласно корпускулярной теории (или теории истечения) свет представляет собой поток частиц (корпускул), которые испускаются источником света. Эти частицы движутся в пространстве и взаимодействуют с веществом по законам механики. Эта теория хорошо объясняла законы прямолинейного распространения света, его отражения и преломления. Основоположником данной теории является Ньютон. Согласно волновой теории свет представляет собой упругие продольные волны в особой среде, заполняющей все пространство - светоносном эфире. Распространение этих волн описывается принципом Гюйгенса. Каждая точка эфира, до которой дошел волновой процесс, является источником элементарных вторичных сферических волн, огибающая которых образует новый фронт колебаний эфира. Гипотеза о волновой природе света высказана Гуком, а развитие она получила в работах Гюйгенса, Френеля, Юнга. Понятие упругого эфира привело к неразрешимым противоречиям. Например, явление поляризации света показало. что световые волны поперечны. Упругие поперечные волны могут распространяться только в твердых телах, где имеет место деформация сдвига. Поэтому эфир должен быть твердой средой, но в то же время не препятствовать движению космических объектов. Экзотичность свойств упругого эфира являлась существенным недостатком первоначальной волновой теории. Противоречия волновой теории были разрешены в 1865 году Максвеллом, который пришел к выводу, что свет - электромагнитная волна. Одним из аргументов в пользу данного утверждения является совпадение скорости электромагнитных волн, теоретически вычисленных Максвеллом, со скоростью света, определенной экспериментально (в опытах Рёмера и Фуко). Согласно современным представлениям, свет имеет двойственнуюкорпускулярно-волновую природу. В одних явлениях свет обнаруживает свойства волн, а в других - свойства частиц. Волновые и квантовые свойства дополняют друг друга. В настоящее время установлено, что корпускулярно - волновая двойственность свойств присуща также любой элементарной частице вещества. Например, обнаружена дифракция электронов, нейтронов. Корпускулярно-волновой дуализм является проявлением двух форм существования материи - вещества и поля.

Слайд 16

ультрафиолетовое излучение

Источники: Газоразрядные лампы с трубками из кварца (кварцевые лампы). Излучается всеми твердыми телами, у которых температура больше 1000°С, а также светящимися парами ртути. Свойства: Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза Применение: В медицине, в промышленности

Слайд 17

Ультрафиолетовое излучение, как и инфракрасное, возникает при электронных переходах с одного энергетического уровня на другой в атомах и молекулах. Ультрафиолетовый диапазон перекрывается рентгеновским излучением. В 1801 году И. Риттер и У. Воластон открыли ультрафиолетовое излучение. Оказалось, что оно действует на хлорид серебра. поэтому УФ излучение исследуют фотографическим методом, а также с помощью люминесценции и фотоэффекта. Трудности в исследовании УФ излучений связаны с ем, что они сильно поглощаются различными веществами. в том числе и стеклом. Поэтому в установках для исследования УФ используют не обычное стекло, а кварц или специальные искусственные кристаллы. УФ излучение с длиной волны до 150 - 200 нм заметно поглощается воздухом и другими газами, поэтому для его исследования используют вакуумспектрографы.

Слайд 18

рентгеновское излучение

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р =3 атм) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм). Свойства: Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Применение: В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

Слайд 19

В 1895 году В. Рентген обнаружил излучение с длиной волны. меньшей, чем УФ. Это излучение возникало при бомбардировке анода потоком электронов, испускаемых катодом. Энергия электронов должна быть очень большой - порядка нескольких десятков тысяч электрон-вольт. Косой срез анода обеспечил выход лучей из трубки. Рентген также исследовал свойства "Х-лучей". Определил, что оно сильно поглощается плотными веществами - свинцом и другими тяжелыми металлами. Им же было установлено, что рентгеновское излучение поглощается по-разному. излучение которое сильно поглощается, было названо мягким, мало поглощаемое - жестким. В дальнейшем было выяснено, что мягкому излучению соответствуют более длинные волны, жесткому - более короткие. В 1901 году Рентген первым из физиков получил Нобелевскую премию.

Слайд 20

гамма-излучение

Длина волны менее 0,01 нм. Самое высокоэнергетическое излучение. Имеет огромную проникающую способность, оказывает сильное биологическое воздействие Применение В медицине,производстве (гамма-дефектоскопия).

Слайд 21

Атомы и атомные ядра могут находиться в возбужденном состоянии менее 1 нс. За более короткое время они освобождаются от избытка энергии путем испускания фотонов - квантов электромагнитного излучения. Электромагнитное излучение, испускаемое возбужденными атомными ядрами, называется гамма-излучением. Гамма-излучение представляет собой поперечные электромагнитные волны. Гамма-излучение - самое коротковолновое излучение. Длина волны меньше 0,1 нм. Это излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами как на Земле, так и в космосе. Атмосфера Земли пропускает только часть всего электромагнитного излучения, поступающего из космоса. Например почти все гамма-излучение поглощается земной атмосферой. Это обеспечивает возможность существования всего живого на Земле. Гамма-излучение взаимодействует с электронными оболочками атомов. передавая часть своей энергии электронам. Путь пробега гамма-квантов в воздухе исчисляется сотнями метров, в твердом веществе - десятками сантиметров и даже метрами. Проникающая способность гамма-излучения увеличивается с ростом энергии волны и уменьшением плотности вещества.

Посмотреть все слайды

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

История открытия электромагнитных волн 1887 - Генрих Герц опубликовал работу "О весьма быстрых электрических колебаниях", где описал свою экспериментальную установку - вибратор и резонатор, - и свои опыты. При электрических колебаниях в вибраторе в пространстве вокруг него возникает вихревое переменное электромагнитное поле, которое регистрируется резонатором

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Слайд 10

Описание слайда:

Слайд 11

Описание слайда:

Слайд 12

Описание слайда:

Слайд 13

Описание слайда:

Ультрокороткие волны Радиоволны длиной менее 10 м (более 30 Мгц). Волны ультракороткие подразделяются на волны метровые (10-1 м), дециметровые (1 м- 10 см), сантиметровые (10-1 см) и миллиметровые (менее 1 см). Основное распространение в радиолокационной технике получили сантиметровые волны. При расчете дальности системы самолетовождения и бомбометания на ультракороткие волны предполагается, что последние распространяются по закону прямой (оптической) видимости, не отражаясь от ионизированных слоев. Системы на ультракоротких волнах более помехоустойчивы к искусственным радиопомехам, чем системы на средних и длинных волнах. Ультракороткие волны по своим свойствам наиболее близки к световым лучам. Они в основном распространяются прямолинейно и сильно поглощаются землей, растительным миром, различными сооружениями, предметами. Поэтому уверенный прием сигналов ультракоротковолновых станций поверхностной волной возможен главным образом тогда, когда между антеннами передатчика и приемника можно мысленно провести прямую линию, не встречающую по всей длине каких-либо препятствий в виде гор, возвышенностей, лесов. Ионосфера же для ультракоротких волн подобно стеклу для света - "прозрачна". Ультракороткие волны почти беспрепятственно проходят через нее. Поэтому-то этот диапазон волн используют для связи с искусственными спутниками Земли, космическими кораблями и между ними. Но наземная дальность действия даже мощной ультракоротковолновой станции не превышает, как правило, 100-200 км. Лишь путь наиболее длинных волн этого диапазона (8-9 м) несколько искривляется нижним слоем ионосферы, который как бы пригибает их к земле. Благодаря этому расстояние, на котором возможен прием ультракоротковолнового передатчика, может быть большим. Иногда, однако, передачи ультракоротковолновых станций слышны на расстояниях в сотни и тысячи километров от них.

Слайд 14

Описание слайда:

Слайд 15

Описание слайда:

Слайд 16

Описание слайда:

Слайд 17

Описание слайда:

Слайд 18

Описание слайда:

Слайд 19

Описание слайда:

Слайд 20

Описание слайда:

Слайд 21

Описание слайда:

Рентгеновское излучение В 1895 году В. Рентген обнаружил излучение с длиной волны. меньшей, чем УФ. Это излучение возникало при бомбардировке анода потоком электронов, испускаемых катодом. Энергия электронов должна быть очень большой - порядка нескольких десятков тысяч электрон-вольт. Косой срез анода обеспечил выход лучей из трубки. Рентген также исследовал свойства "Х-лучей". Определил, что оно сильно поглощается плотными веществами - свинцом и другими тяжелыми металлами. Им же было установлено, что рентгеновское излучение поглощается по-разному. излучение которое сильно поглощается, было названо мягким, мало поглощаемое - жестким. В дальнейшем было выяснено, что мягкому излучению соответствуют более длинные волны, жесткому - более короткие. В 1901 году Рентген первым из физиков получил Нобелевскую премию.

Описание слайда:

Гамма-излучение Атомы и атомные ядра могут находиться в возбужденном состоянии менее 1 нс. За более короткое время они освобождаются от избытка энергии путем испускания фотонов - квантов электромагнитного излучения. Электромагнитное излучение, испускаемое возбужденными атомными ядрами, называется гамма-излучением. Гамма-излучение представляет собой поперечные электромагнитные волны. Гамма-излучение - самое коротковолновое излучение. Длина волны меньше 0,1 нм. Это излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами как на Земле, так и в космосе. Атмосфера Земли пропускает только часть всего электромагнитного излучения, поступающего из космоса. Например почти все гамма-излучение поглощается земной атмосферой. Это обеспечивает возможность существования всего живого на Земле. Гамма-излучение взаимодействует с электронными оболочками атомов. передавая часть своей энергии электронам. Путь пробега гамма-квантов в воздухе исчисляется сотнями метров, в твердом веществе - десятками сантиметров и даже метрами. Проникающая способность гамма-излучения увеличивается с ростом энергии волны и уменьшением плотности вещества.

Слайд 24

Описание слайда:


Top